Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.306
Filtrar
1.
J Orthop Surg Res ; 19(1): 244, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38622696

RESUMO

BACKGROUND: Ossification of ligamentum flavum (OLF) is a prevalent degenerative spinal disease, typically causing severe neurological dysfunction. Kruppel-like factor 5 (KLF5) plays an essential role in the regulation of skeletal development. However, the mechanism KLF5 plays in OLF remains unclear, necessitating further investigative studies. METHODS: qRT-PCR, immunofluorescent staining and western blot were used to measure the expression of KLF5. Alkaline Phosphatase (ALP) staining, Alizarin red staining (ARS), and the expression of Runt-related transcription factor 2 (RUNX2), osteopontin (OPN), and osteocalcin (OCN) were used to evaluate the osteogenic differentiation. Luciferase activity assay and ChIP-PCR were performed to investigate the molecular mechanisms. RESULTS: KLF5 was significantly upregulated in OLF fibroblasts in contrast to normal ligamentum flavum (LF) fibroblasts. Silencing KLF5 diminished osteogenic markers and mineralized nodules, while its overexpression had the opposite effect, confirming KLF5's role in promoting ossification. Moreover, KLF5 promotes the ossification of LF by activating the transcription of Connexin 43 (CX43), and overexpressing CX43 could reverse the suppressive impact of KLF5 knockdown on OLF fibroblasts' osteogenesis. CONCLUSION: KLF5 promotes the OLF by transcriptionally activating CX43. This finding contributes significantly to our understanding of OLF and may provide new therapeutic targets.


Assuntos
Ligamento Amarelo , Ossificação Heterotópica , Humanos , Osteogênese/genética , Conexina 43/genética , Células Cultivadas , Fatores de Transcrição/metabolismo , Ossificação Heterotópica/genética , Ossificação Heterotópica/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo
2.
J Cell Mol Med ; 28(8): e18201, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38568078

RESUMO

Sensory nerves play a crucial role in maintaining bone homeostasis by releasing Semaphorin 3A (Sema3A). However, the specific mechanism of Sema3A in regulation of bone marrow mesenchymal stem cells (BMMSCs) during bone remodelling remains unclear. The tibial denervation model was used and the denervated tibia exhibited significantly lower mass as compared to sham operated bones. In vitro, BMMSCs cocultured with dorsal root ganglion cells (DRGs) or stimulated by Sema3A could promote osteogenic differentiation through the Wnt/ß-catenin/Nrp1 positive feedback loop, and the enhancement of osteogenic activity could be inhibited by SM345431 (Sema3A-specific inhibitor). In addition, Sema3A-stimulated BMMSCs or intravenous injection of Sema3A could promote new bone formation in vivo. To sum up, the coregulation of bone remodelling is due to the ageing of BMMSCs and increased osteoclast activity. Furthermore, the sensory neurotransmitter Sema3A promotes osteogenic differentiation of BMMSCs via Wnt/ß-catenin/Nrp1 positive feedback loop, thus promoting osteogenesis in vivo and in vitro.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Osteogênese/genética , Semaforina-3A/genética , Retroalimentação , beta Catenina , Gânglios Espinais , Neuropilina-1/genética
3.
Int J Nanomedicine ; 19: 3143-3166, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585472

RESUMO

Background: The ability of nanomaterials to induce osteogenic differentiation is limited, which seriously imped the repair of craniomaxillofacial bone defect. Magnetic graphene oxide (MGO) nanocomposites with the excellent physicochemical properties have great potential in bone tissue engineering. In this study, we aim to explore the craniomaxillofacial bone defect repairment effect of MGO nanocomposites and its underlying mechanism. Methods: The biocompatibility of MGO nanocomposites was verified by CCK8, live/dead staining and cytoskeleton staining. The function of MGO nanocomposites induced osteogenic differentiation of BMSCs was investigated by ALP activity detection, mineralized nodules staining, detection of osteogenic genes and proteins, and immune-histochemical staining. BMSCs with or without MGO osteogenic differentiation induction were collected and subjected to high-throughput circular ribonucleic acids (circRNAs) sequencing, and then crucial circRNA circAars was screened and identified. Bioinformatics analysis, Dual-luciferase reporter assay, RNA binding protein immunoprecipitation (RIP), fluorescence in situ hybridization (FISH) and osteogenic-related examinations were used to further explore the ability of circAars to participate in MGO nanocomposites regulation of osteogenic differentiation of BMSCs and its potential mechanism. Furthermore, critical-sized calvarial defects were constructed and were performed to verify the osteogenic differentiation induction effects and its potential mechanism induced by MGO nanocomposites. Results: We verify the good biocompatibility and osteogenic differentiation improvement effects of BMSCs mediated by MGO nanocomposites. Furthermore, a new circRNA-circAars, we find and identify, is obviously upregulated in BMSCs mediated by MGO nanocomposites. Silencing circAars could significantly decrease the osteogenic ability of MGO nanocomposites. The underlying mechanism involved circAars sponging miR-128-3p to regulate the expression of SMAD5, which played an important role in the repair craniomaxillofacial bone defects mediated by MGO nanocomposites. Conclusion: We found that MGO nanocomposites regulated osteogenic differentiation of BMSCs via the circAars/miR-128-3p/SMAD5 pathway, which provided a feasible and effective strategy for the treatment of craniomaxillofacial bone defects.


Assuntos
Grafite , MicroRNAs , Nanocompostos , MicroRNAs/genética , Osteogênese/genética , RNA Circular , Hibridização in Situ Fluorescente , Óxido de Magnésio , Células Cultivadas , Regeneração Óssea , Fenômenos Magnéticos , Diferenciação Celular
4.
Bone Res ; 12(1): 24, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38594260

RESUMO

Ossification of the Posterior Longitudinal Ligament (OPLL) is a degenerative hyperostosis disease characterized by the transformation of the soft and elastic vertebral ligament into bone, resulting in limited spinal mobility and nerve compression. Employing both bulk and single-cell RNA sequencing, we elucidate the molecular characteristics, cellular components, and their evolution during the OPLL process at a single-cell resolution, and validate these findings in clinical samples. This study also uncovers the capability of ligament stem cells to exhibit endothelial cell-like phenotypes in vitro and in vivo. Notably, our study identifies LOXL2 as a key regulator in this process. Through gain-and loss-of-function studies, we elucidate the role of LOXL2 in the endothelial-like differentiation of ligament cells. It acts via the HIF1A pathway, promoting the secretion of downstream VEGFA and PDGF-BB. This function is not related to the enzymatic activity of LOXL2. Furthermore, we identify sorafenib, a broad-spectrum tyrosine kinase inhibitor, as an effective suppressor of LOXL2-mediated vascular morphogenesis. By disrupting the coupling between vascularization and osteogenesis, sorafenib demonstrates significant inhibition of OPLL progression in both BMP-induced and enpp1 deficiency-induced animal models while having no discernible effect on normal bone mass. These findings underscore the potential of sorafenib as a therapeutic intervention for OPLL.


Assuntos
Ligamentos Longitudinais , Ossificação do Ligamento Longitudinal Posterior , Animais , Ligamentos Longitudinais/metabolismo , Osteogênese/genética , Sorafenibe/farmacologia , Ossificação do Ligamento Longitudinal Posterior/genética , Diferenciação Celular
5.
Shanghai Kou Qiang Yi Xue ; 33(1): 6-12, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38583018

RESUMO

PURPOSE: Bioactive magnesium ions were successfully incorporated into the nanoporous titanium base coating by micro-arc oxidation(MAO), and its physical properties and osteogenic effects were explored. METHODS: Non-magnesium-containing and magnesium-containing titanium porous titanium coatings(MAO, MAO-mg) were prepared by changing the composition of MAO electrolyte and controlling the doping of magnesium in porous titanium coatings. The samples were characterized by scanning electron microscope (SEM), roughness, contact angle and energy dispersive X-ray spectrometer (EDS). Mg2+ release ability of magnesium-doped nanoporous titanium coatings was determined by inductively coupled plasma/optical emission spectrometer(ICP-OES). The structure of the cytoskeleton was determined by live/dead double staining, CCK-8 detection of material proliferation-toxicity, and staining of ß-actin using FITC-phalloidin. The effects of the coating on osteogenic differentiation in vitro were determined by alizarin red (ARS), alkaline phosphatase (ALP) staining and real-time polymerase chain reaction (qRT-PCR). SPSS 25.0 software package was used for statistical analysis. RESULTS: The MAO electrolyte with magnesium ions did not change the surface characteristics of the porous titanium coating. Each group prepared by MAO had similar microporous structure(P>0.05). There was no significant difference in surface roughness and contact angle between MAO treatment group (MAO, MAO-mg)(P>0.05), but significantly higher than that of Ti group (P<0.05). With the passage of cell culture time, MAO-mg group promoted cell proliferation (P<0.05). MAO-mg group was significantly higher than other groups in ALP and ARS staining. The expression of Runx2 mRNA (P<0.05), ALP(P<0.05) and osteocalcin OCN(P<0.05) in MAO-mg group was significantly higher than that in Ti and MAO groups. CONCLUSIONS: MAO successfully prepared magnesium-containing nanoporous titanium coating, and showed a significant role in promoting osteogenic differentiation.


Assuntos
Nanoporos , Titânio , Titânio/farmacologia , Magnésio/química , Magnésio/farmacologia , Osteogênese/genética , Eletrólitos/farmacologia , Íons/farmacologia , Propriedades de Superfície , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química
6.
Shanghai Kou Qiang Yi Xue ; 33(1): 13-21, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38583019

RESUMO

PURPOSE: To clarify the effect of genistein(GEN) on osteogenic differentiation and explore the effect of GEN loaded by platelet-rich fibrin (PRF) on the repair process of bone defects in obese mice. METHODS: In in vitro experiments, the effect of GEN(0, 0.1, 1, 10, 50 µmol/L) on the proliferation of mouse embryonic osteoblast precursor cells (MC3T3-E1) was determined by CCK 8. Alkaline phosphatase(ALP) staining and quantitative detection of ALP activity were performed to determine the changes of ALP activity in cells; RNA and protein expression levels of ALP, osteopontin (OPN) and osteocalcin (OCN) were detected by quantitative real-time PCR(qRT-PCR) and Western blot. Alizarin red staining was used to define the effect of GEN on mineralization of MC3T3-E1. To verify the feasibility of the PRF drug loading, the ultrastructure of PRF was subsequently observed under SEM. In in vivo experiments, obese C57 mouse models were established by high-fat diet feeding. On this basis, skull defect models with a diameter of 2.8 mm were established, and the prepared GEN/PRF complexes were placed into the bone defect area. The effects of GEN on skull defect repair in obese mice were evaluated by Micro-CT scanning and hematoxylin-eosin(H-E) staining. Statistical analysis was performed with GraphPad Prism 5.0 software package. RESULTS: CCK 8 results showed that 0.1, 1 µmol/L GEN promoted cell proliferation within 7 days(P<0.05); 10 µmol/L GEN had no significant effect on the process of cell proliferation. From the second day, 50 µmol/L GEN significantly inhibited cell growth and showed cytotoxicity(P<0.05). These two concentrations had similar effects in promoting cellular osteogenic differentiation. SEM results showed that PRF presented a 3-dimensional network structure, providing space for loading drug molecules. In in vivo experiments, the body weight of mice in the high-fat diet (HFD) group was 27.7% greater than that in the normal diet group(P<0.05) and had abnormal glucose tolerance (P<0.05). Micro-CT showed that compared with the normal diet group, the number of bone trabeculae in the femur of obese mice was decreased(P<0.05), the distance between bone trabeculae was widened(P<0.05), and the bone density was decreased (P<0.05). In addition, GEN (0.1, 1.0 µmol/L) loaded by PRF increased bone volume fraction in the skull of obese mice (P<0.05). H-E results showed that GEN/PRF promoted the healing of the bone defects. CONCLUSIONS: GEN promotes osteogenic differentiation of MC3T3-E1, and it can effectively accelerate the healing of cranial bone defects after loading with PRF in obese mice.


Assuntos
Osteogênese , Fibrina Rica em Plaquetas , Animais , Camundongos , Osteogênese/genética , Genisteína/farmacologia , Camundongos Obesos , Sincalida/farmacologia , Diferenciação Celular/genética , Osteoblastos
7.
Int J Biol Macromol ; 265(Pt 1): 130649, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38453121

RESUMO

Bone Morphogenetic Protein 4 (BMP4) is crucial for bone and cartilage tissue regeneration, essential in medical tissue engineering, cosmetology, and aerospace. However, its cost and degradation susceptibility pose significant clinical challenges. To enhance its osteogenic activity while reducing dosage and administration frequency, we developed a novel long-acting BMP4 delivery system using poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) (PBVHx) nanoparticles with soybean lecithin-modified BMP4 (sBP-NPs). These nanoparticles promote directed osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) through sustained BMP4 release. sBP-NPs exhibited uniform size (100-200 nm) and surface charges, with higher BMP4 entrapment efficiency (82.63 %) compared to controls. After an initial burst release within 24 h, sBP-NPs achieved 80 % cumulative BMP4 release within 20 days, maintaining levels better than control BP-NPs with unmodified BMP4. Co-incubation and nanoparticle uptake experiments confirmed excellent biocompatibility of sBP-NPs, promoting hBMSC differentiation towards osteogenic lineage with increased expression of type I collagen, calcium deposition, and ALP activity (> 20,000 U/g protein) compared to controls. Moreover, hBMSCs treated with sBP-NPs exhibited heightened expression of osteogenic genetic markers, surpassing control groups. Hence, this innovative strategy of sustained BMP4 release from sBP-NPs holds potential to revolutionize bone regeneration in minimally invasive surgery, medical cosmetology or space environments.


Assuntos
Células-Tronco Mesenquimais , Nanopartículas , Humanos , Osteogênese/genética , Proteína Morfogenética Óssea 4/genética , Preparações de Ação Retardada/farmacologia , Diferenciação Celular , Células da Medula Óssea/metabolismo , Células Cultivadas
8.
BMC Oral Health ; 24(1): 390, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539170

RESUMO

BACKGROUND: Periodontal ligament stem cells (PDLSCs) have been proposed as therapeutic candidates in periodontal diseases and periodontium defects. Paracrine factors of PDLSCs, namely, secretome, can contribute to tissue regeneration comparable to direct stem cell application. This study explored restoration effects of PDLSC-derived secretome/conditioned medium (PDLSC-CM) on PDLSCs themselves in an inflammatory microenvironment and identified its action mechanisms using proteomics and transcriptomic profiling. METHODS: PDLSC-CM was prepared from cells under healthy culture conditions. Mass spectrometry and liquid chromatography-tandem mass spectrometry (LC-MS/MS) were then performed to analyze the PDLSC-CM proteome. Osteogenic differentiation of PDLSCs under inflammatory conditions or in the presence of PDLSC-CM was then characterized in assays of alkaline phosphatase activity, intracellular calcium levels, protein expression of osteogenic markers, and matrix mineralization. Furthermore, the transcriptomic profile was assessed to identify significantly enriched signaling pathways and associated molecular networks by RNA sequencing. RESULTS: LC-MS/MS proteomics identified a total of 203 proteins and distinguished 187 significant protein changes in PDLSC-CM compared to control-CM. LPS-treated PDLSCs significantly attenuated osteogenic differentiation. When PDLSCs were treated with PDLSC-CM alone, their osteogenic activity was significantly upregulated compared to the control group. Moreover, the LPS-impaired osteogenesis of PDLSCs was reconstituted by PDLSC-CM treatment. RNA sequencing revealed 252, 1,326, and 776 differentially expressed genes in the control vs. LPS, control vs. PDLSC-CM, and LPS vs. LPS + PDLSC-CM groups, respectively. CONCLUSION: This study suggest that PDLSC-CM restores the osteogenic potential of PDLSCs in an inflammatory environment through secretory functions representing potential repair and regenerative mechanisms.


Assuntos
Ligamento Periodontal , Periodontite , Humanos , Osteogênese/genética , Meios de Cultivo Condicionados/farmacologia , Proteoma/farmacologia , Transcriptoma , Lipopolissacarídeos/farmacologia , Cromatografia Líquida , Secretoma , Espectrometria de Massas em Tandem , Células-Tronco , Diferenciação Celular , Células Cultivadas
9.
Int J Mol Sci ; 25(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38542181

RESUMO

Periodontal defects' localization affects wound healing and bone remodeling, with faster healing in the upper jaw compared to the lower jaw. While differences in blood supply, innervation, and odontogenesis contribute, cell-intrinsic variances may exist. Few studies explored cell signaling in periodontal ligament stem cells (PDLSC), overlooking mandible-maxilla disparitiesUsing kinomics technology, we investigated molecular variances in PDLSC. Characterization involved stem cell surface markers, proliferation, and differentiation capacities. Kinase activity was analyzed via multiplex kinase profiling, mapping differential activity in known gene regulatory networks. Upstream kinase analysis identified stronger EphA receptor expression in the mandible, potentially inhibiting osteogenic differentiation. The PI3K-Akt pathway showed higher activity in lower-jaw PDLSC. PDLSC from the upper jaw exhibit superior proliferation and differentiation capabilities. Differential activation of gene regulatory pathways in upper vs. lower-jaw PDLSC suggests implications for regenerative therapies.


Assuntos
Osteogênese , Ligamento Periodontal , Osteogênese/genética , Fosfatidilinositol 3-Quinases/metabolismo , Células-Tronco/metabolismo , Diferenciação Celular/fisiologia , Mandíbula , Células Cultivadas , Proliferação de Células
10.
Front Biosci (Landmark Ed) ; 29(3): 115, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38538259

RESUMO

BACKGROUND: Postmenopausal osteoporosis (PMOP) is a prevalent disease, which features decreased bone mass, bone weakness and deteriorated bone microstructure in postmenopausal women. Although many factors have been revealed to contribute to the occurrence of PMOP, its mechanism remains undefined. This work aimed to identify significant changes in gene expression during PMOP formation and to examine the most valuable differential genes in postmenopausal osteoporosis versus the control group. METHODS: The GSE68303 dataset that contains 12 ovariectomize (OVX) experimental and 11 sham groups was downloaded and analyzed. The results indicated that interferon regulatory factor 4 (IRF4) might be a hub gene in the development of postmenopausal osteoporosis. Western blot and immunohistochemistry were carried out to evaluate IRF4 levels in thoracic vertebra extracts from OVX and Sham mice. To assess IRF4's impact on osteogenic differentiation in postmenopausal bone marrow mesenchymal stem cells (BM-MSCs), IRF4 overexpression (OV-IRF4) and knockdown (Sh-IRF4) plasmids were constructed. RESULTS: The results showed that comparing with the sham group, bone samples from the OVX group showed higher IRF4 expression. Alkaline phosphatase (ALP) staining revealed that IRF4 overexpression significantly inhibited ALP activity, while IRF4 knockdown promoted ALP activity in BM-MSCs. Simvastatin-treated OVX mice showed increased total bone volume/total tissue volume (BV/TV) and elevated Runx2 expression by immunohistochemical staining compared with the OVX group. CONCLUSIONS: This study demonstrated that IRF4 is associated with OVX induced osteoporosis, it can regulate bone stability by inhibiting the osteogenic differentiation BM-MSCs. This study may help enhance our understanding of the molecular mechanism of PMOP formation, providing new insights into estrogen defiance induced osteoporosis.


Assuntos
Fatores Reguladores de Interferon , Osteogênese , Osteoporose Pós-Menopausa , Animais , Feminino , Humanos , Camundongos , Diferenciação Celular/fisiologia , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Osteoblastos/metabolismo , Osteogênese/genética , Osteoporose Pós-Menopausa/genética
11.
ACS Biomater Sci Eng ; 10(4): 2337-2350, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38531043

RESUMO

The fabrication of clinically relevant synthetic bone grafts relies on combining multiple biodegradable biomaterials to create a structure that supports the regeneration of defects while delivering osteogenic biomolecules that enhance regeneration. MicroRNA-200c (miR-200c) functions as a potent osteoinductive biomolecule to enhance osteogenic differentiation and bone formation; however, synthetic tissue-engineered bone grafts that sustain the delivery of miR-200c for bone regeneration have not yet been evaluated. In this study, we created novel, multimaterial, synthetic bone grafts from gelatin-coated 3D-printed polycaprolactone (PCL) scaffolds. We attempted to optimize the release of pDNA encoding miR-200c by varying gelatin types, concentrations, and polymer crosslinking materials to improve its functions for bone regeneration. We revealed that by modulating gelatin type, coating material concentration, and polymer crosslinking, we effectively altered the release rates of pDNA encoding miR-200c, which promoted osteogenic differentiation in vitro and bone regeneration in a critical-sized calvarial bone defect animal model. We also demonstrated that crosslinking the gelatin coatings on the PCL scaffolds with low-concentration glutaraldehyde was biocompatible and increased cell attachment. These results strongly indicate the potential use of gelatin-based systems for pDNA encoding microRNA delivery in gene therapy and further demonstrate the effectiveness of miR-200c for enhancing bone regeneration from synthetic bone grafts.


Assuntos
MicroRNAs , Osteogênese , Animais , Osteogênese/genética , Gelatina/farmacologia , Gelatina/química , Tecidos Suporte/química , Regeneração Óssea/genética , MicroRNAs/genética , Polímeros , Impressão Tridimensional
12.
BMC Musculoskelet Disord ; 25(1): 213, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38481217

RESUMO

Osteoporosis is caused by the imbalance of osteoblasts and osteoclasts. The regulatory mechanisms of differentially expressed genes (DEGs) in pathogenesis of osteoporosis are of significant and needed to be further investigated. GSE100609 dataset downloaded from Gene Expression Omnibus (GEO) database was used to identified DEGs in osteoporosis patients. KEGG analysis was conducted to demonstrate signaling pathways related to enriched genes. Osteoporosis patients and the human mesenchymal stem cells (hMSCs) were obtained for in vivo and in vitro resaerch. Lentivirus construction and viral infection was used to knockdown genes. mRNA expression and protein expression were detected via qRT-PCR and western blot assay separately. Alkaline phosphatase (ALP) activity detection, alizarin Red S (ARS) staining, and expression of bone morphogenetic protein 2 (BMP2), osteocalcin (OCN) and Osterix were evaluated to determine osteoblast differentiation capacity. UL-16 binding protein 1 (ULBP1) gene was upregulated in osteoporosis and downregulated in differentiated hMSCs. Knockdown of ULBP1 increased ALP activity, mineralization ability evaluated by ARS staining, expression of BMP2, OCN and Osterix in differentiated hMSCs. Furthermore, rescue experiment demonstrated that suppressed ULBP1 boosted osteoblast differentiation by activating TNF-ß signaling pathway. Knockdown of ULBP1 gene could promoted osteoblast differentiation by activating TNF-ß signaling pathway in differentiated hMSCs. ULBP1 may be a the Achilles' heel of osteoporosis, and suppression of ULBP1 could be a promising treatment for osteoporosis.


Assuntos
Células-Tronco Mesenquimais , Osteoporose , Humanos , Proteínas de Transporte/metabolismo , Diferenciação Celular/genética , Células Cultivadas , Linfotoxina-alfa/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo , Osteocalcina/metabolismo , Osteogênese/genética , Osteoporose/genética , Proteína Smad2/metabolismo
13.
Int J Med Sci ; 21(4): 664-673, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38464837

RESUMO

N6-Methyladenosine (m6A) has been reported to play a dynamic role in osteoporosis and bone metabolism. However, whether m6A is involved in the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) remains unclear. Here, we found that methyltransferase-like 3 (METTL3) was up-regulated synchronously with m6A during the osteogenic differentiation of hPDLSCs. Functionally, lentivirus-mediated knockdown of METTL3 in hPDLSCs impaired osteogenic potential. Mechanistic analysis further showed that METTL3 knockdown decreased m6A methylation and reduced IGF2BP1-mediated stability of runt-related transcription factor 2 (Runx2) mRNA, which in turn inhibited osteogenic differentiation. Therefore, METTL3-based m6A modification favored osteogenic differentiation of hPDLSCs through IGF2BP1-mediated Runx2 mRNA stability. Our study shed light on the critical roles of m6A on regulation of osteogenic differentiation in hPDLSCs and served novel therapeutic approaches in vital periodontitis therapy.


Assuntos
Osteogênese , Ligamento Periodontal , Humanos , Diferenciação Celular/genética , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Osteogênese/genética , Células-Tronco
14.
J Orthop Surg Res ; 19(1): 192, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38504358

RESUMO

BACKGROUND: Fractures heal through a process that involves angiogenesis and osteogenesis but may also lead to non-union or delayed healing. Bone marrow mesenchymal stem cells (BMSCs) have been reported to play a pivotal role in bone formation and vascular regeneration and the p75 neurotrophin receptor (p75NTR) as being an important regulator of osteogenesis. Herein, we aim to determine the potential mediation of BMSCs by p75NTR in bone healing. METHODS: Rat BMSCs were identified by flow cytometry (FCM) to detect cell cycle and surface markers. Then transfection of si/oe-p75NTR was performed in BMSCs, followed by Alizarin red staining to detect osteogenic differentiation of cells, immunofluorescence double staining was performed to detect the expression of p75NTR and sortilin, co-immunoprecipitation (CO-IP) was conducted to analyze the interaction between p75NTR and sortilin, and EdU staining and cell scratch assay to assess the proliferation and migration of human umbilical vein endothelial cells (HUVECs). The expression of HIF-1α, VEGF, and apoptosis-related proteins were also detected. In addition, a rat fracture healing model was constructed, and BMSCs-si-p75NTR were injected, following which the fracture condition was observed using micro-CT imaging, and the expression of platelet/endothelial cell adhesion molecule-1 (CD31) was assessed. RESULTS: The results showed that BMSCs were successfully isolated, p75NTR inhibited apoptosis and the osteogenic differentiation of BMSCs, while si-p75NTR led to a decrease in sortilin expression in BMSCs, increased proliferation and migration in HUVECs, and upregulation of HIF-1α and VEGF expression. In addition, an interaction was observed between p75NTR and sortilin. The knockdown of p75NTR was found to reduce the severity of fracture in rats and increase the expression of CD31 and osteogenesis-related proteins. CONCLUSION: Silencing p75NTR effectively modulates BMSCs to promote osteogenic differentiation and angiogenesis, offering a novel perspective for improving fracture healing.


Assuntos
Fraturas Ósseas , Células-Tronco Mesenquimais , Animais , Humanos , Ratos , 60489 , Células da Medula Óssea , Diferenciação Celular/genética , Células Cultivadas , Células Endoteliais , Fraturas Ósseas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osteogênese/genética , Receptor de Fator de Crescimento Neural/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
15.
J Orthop Surg Res ; 19(1): 190, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500202

RESUMO

PURPOSE: To study the effect of miR-150-5p on the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs), and further explore the relationship between its regulatory mechanism and irisin. METHODS: We isolated mouse BMSCs, and induced osteogenic differentiation by osteogenic induction medium. Using qPCR to detect the expression of osteogenic differentiation-related genes, western blot to detect the expression of osteogenic differentiation-related proteins, and luciferase reporter system to verify that FNDC5 is the target of miR-150-5p. Irisin intraperitoneal injection to treat osteoporosis in mice constructed by subcutaneous injection of dexamethasone. RESULTS: Up-regulation of miR-150-5p inhibited the proliferation of BMSCs, and decreased the content of osteocalcin, ALP activity, calcium deposition, the expression of osteogenic differentiation genes (Runx2, OSX, OCN, OPN, ALP and BMP2) and protein (BMP2, OCN, and Runx2). And down-regulation of miR-150-5p plays the opposite role of up-regulation of miR-150-5p on osteogenic differentiation of BMSCs. Results of luciferase reporter gene assay showed that FNDC5 gene was the target gene of miR-150-5p, and miR-150-5p inhibited the expression of FNDC5 in mouse BMSCs. The expression of osteogenic differentiation genes and protein, the content of osteocalcin, ALP activity and calcium deposition in BMSCs co-overexpressed by miR-150-5p and FNDC5 was significantly higher than that of miR-150-5p overexpressed alone. In addition, the overexpression of FNDC5 reversed the blocked of p38/MAPK pathway by the overexpression of miR-150-5p in BMSCs. Irisin, a protein encoded by FNDC5 gene, improved symptoms in osteoporosis mice through intraperitoneal injection, while the inhibitor of p38/MAPK pathway weakened this function of irisin. CONCLUSION: miR-150-5p inhibits the osteogenic differentiation of BMSCs by targeting irisin to regulate the/p38/MAPK signaling pathway, and miR-150-5p/irisin/p38 pathway is a potential target for treating osteoporosis.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , Osteoporose , Animais , Camundongos , Medula Óssea , Cálcio/metabolismo , Diferenciação Celular/genética , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Fibronectinas/farmacologia , Luciferases/metabolismo , Luciferases/farmacologia , Sistema de Sinalização das MAP Quinases/genética , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Osteocalcina/metabolismo , Osteogênese/genética , Osteoporose/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Fatores de Transcrição/metabolismo
16.
Nat Commun ; 15(1): 2384, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493144

RESUMO

MALAT1, one of the few highly conserved nuclear long noncoding RNAs (lncRNAs), is abundantly expressed in normal tissues. Previously, targeted inactivation and genetic rescue experiments identified MALAT1 as a suppressor of breast cancer lung metastasis. On the other hand, Malat1-knockout mice are viable and develop normally. On a quest to discover the fundamental roles of MALAT1 in physiological and pathological processes, we find that this lncRNA is downregulated during osteoclastogenesis in humans and mice. Remarkably, Malat1 deficiency in mice promotes osteoporosis and bone metastasis of melanoma and mammary tumor cells, which can be rescued by genetic add-back of Malat1. Mechanistically, Malat1 binds to Tead3 protein, a macrophage-osteoclast-specific Tead family member, blocking Tead3 from binding and activating Nfatc1, a master regulator of osteoclastogenesis, which results in the inhibition of Nfatc1-mediated gene transcription and osteoclast differentiation. Notably, single-cell transcriptome analysis of clinical bone samples reveals that reduced MALAT1 expression in pre-osteoclasts and osteoclasts is associated with osteoporosis and metastatic bone lesions. Altogether, these findings identify Malat1 as a lncRNA that protects against osteoporosis and bone metastasis.


Assuntos
Osteoporose , RNA Longo não Codificante , Animais , Humanos , Camundongos , Macrófagos/metabolismo , Osteoclastos/metabolismo , Osteogênese/genética , Osteoporose/genética , RNA Longo não Codificante/metabolismo
17.
Sci Rep ; 14(1): 6777, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514682

RESUMO

Extracellular matrix (ECM) is an intricate structure providing the microenvironment niche that influences stem cell differentiation. This study aimed to investigate the efficacy of decellularized ECM derived from human dental pulp stem cells (dECM_DPSCs) and gingival-derived mesenchymal stem cells (dECM_GSCs) as an inductive scaffold for osteogenic differentiation of GSCs. The proteomic analysis demonstrated that common and signature matrisome proteins from dECM_DPSCs and dECM_GSCs were related to osteogenesis/osteogenic differentiation. RNA sequencing data from GSCs reseeded on dECM_DPSCs revealed that dECM_DPSCs upregulated genes related to the Hippo and Wnt signaling pathways in GSCs. In the inhibitor experiments, results revealed that dECM_DPSCs superiorly promoted GSCs osteogenic differentiation, mainly mediated through Hippo and Wnt signaling. The present study emphasizes the promising translational application of dECM_DPSCs as a bio-scaffold rich in favorable regenerative microenvironment for tissue engineering.


Assuntos
Osteogênese , Via de Sinalização Wnt , Humanos , Osteogênese/genética , Proteômica , Polpa Dentária , Matriz Extracelular/metabolismo , Diferenciação Celular , Células-Tronco/metabolismo , Proliferação de Células , Células Cultivadas
18.
Lipids Health Dis ; 23(1): 88, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528544

RESUMO

The accumulation of reactive oxygen species (ROS) within the bone marrow microenvironment leads to diminished osteogenic differentiation and heightened lipogenic differentiation of mesenchymal stem cells residing in the bone marrow, ultimately playing a role in the development of osteoporosis (OP). Mitigating ROS levels is a promising approach to counteracting OP. In this study, a nanozyme composed of magnesium-based zeolitic imidazolate frameworks (Mg-ZIF) was engineered to effectively scavenge ROS and alleviate OP. The results of this study indicate that Mg-ZIF exhibits significant potential in scavenging ROS and effectively promoting osteogenic differentiation of bone mesenchymal stem cells (BMSCs). Additionally, Mg-ZIF was found to inhibit the differentiation of BMSCs into adipose cells. In vivo experiments further confirmed the ability of Mg-ZIF to mitigate OP by reducing ROS levels. Mechanistically, Mg-ZIF enhances the differentiation of BMSCs into osteoblasts by upregulating lipid metabolic pathways through ROS scavenging. The results indicate that Mg-ZIF has potential as an effective therapeutic approach for the treatment of osteoporosis.


Assuntos
Células-Tronco Mesenquimais , Osteoporose , Humanos , Osteogênese/genética , Magnésio , Metabolismo dos Lipídeos/genética , Espécies Reativas de Oxigênio/metabolismo , Células Cultivadas , Diferenciação Celular , Osteoporose/tratamento farmacológico , Osteoporose/genética , Osteoporose/metabolismo , Células da Medula Óssea
19.
J Int Med Res ; 52(3): 3000605241234567, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38530015

RESUMO

OBJECTIVE: Vascular calcification is a common chronic kidney disease complication. This study aimed to investigate the function of long non-coding RNA (LncRNA) H19 in vascular calcification to explore new therapeutic strategies. METHODS: We induced osteogenic differentiation and calcification of vascular smooth muscle cells (VSMCs) using ß-glycerophosphate. Then, we detected the LncRNA H19 promoter methylation status and Erk1/2 pathways using methylation-specific polymerase chain reaction and western blotting, respectively. RESULTS: Compared with the control group, high phosphorus levels induced VSMC calcification, accompanied by increases in LncRNA H19 and the osteogenic marker Runx2 and reduction of the contractile phenotype marker SM22a. LncRNA H19 knockdown inhibited osteogenic differentiation and calcification of VSMCs. However, the suppressed role of VSMC calcification caused by shRNA H19 was partially reversed by simultaneous activation of the Erk1/2 pathways. Mechanically, we found that the methylation rate of CpG islands in the LncRNA H19 promoter region was significantly lower in the high-phosphorus group, and the hypomethylation state elevated LncRNA H19 levels, which in turn regulated phosphorylated Erk1/2 expression. CONCLUSIONS: LncRNA H19 promoted osteogenic differentiation and calcification of VSMCs by regulating the Erk1/2 pathways. Additionally, hypomethylation of LncRNA H19 promoter CpG islands upregulated LncRNA H19 levels and subsequently activated Erk1/2 phosphorylation.


Assuntos
RNA Longo não Codificante , Calcificação Vascular , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Músculo Liso Vascular , Osteogênese/genética , Calcificação Vascular/genética , Calcificação Vascular/metabolismo , Regiões Promotoras Genéticas , Fósforo , Miócitos de Músculo Liso , Células Cultivadas
20.
Cell Mol Biol (Noisy-le-grand) ; 70(2): 227-234, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38430017

RESUMO

Platelet-rich plasma (PRP) can cause osteogenic differentiation of dental pulp stem cells (DPSCs). However, the effect of exosomes derived from PRP (PRP-Exos) on osteogenic differentiation of DPSCs remains unclear. Herein, we evaluated the impact of PRP-Exos on osteogenic differentiation of DPSCs. PRP-Exos were isolated and identified by transmission electron microscopy (TEM) and western blotting (WB). Immunofluorescence staining was performed to evaluate endocytosis of PRP-Exos by DPSCs. Alkaline phosphatase staining, alizarin red staining, western blot and qRT-PCR were carried out to evaluate the DPSCs osteogenic differentiation. The sequencing microRNA (miRNA) was conducted to determine the microRNA profile of PRP-Exos treated and untreated DPSCs. The results showed that endocytosis of PRP-Exos stimulated DPSCs odontogenic differentiation by elevated expression of ALP, DMP-1, OCN, and RUNX2. ALP activity and calcified nodules formation of PRP-Exos treated DPSCs were considerably elevated relative to that of the control group. MicroRNA sequencing revealed that 112 microRNAs considerably varied in PRP-Exos treated DPSCs, of which 84 were elevated and 28 were reduced. Pathway analysis suggested that genes targeted by differentially expressed (DE) miRNAs were contributed to many signaling cascades, such as the Wnt cascade. 65 genes targeted by 30 DE miRNA were contributed to Wnt signaling. Thus, it can be infered that PRP-Exos could enhance osteogenic differentiation and alter the miRNA expression profile of DPSCs.


Assuntos
Exossomos , MicroRNAs , Plasma Rico em Plaquetas , Osteogênese/genética , Exossomos/genética , Polpa Dentária , Proliferação de Células , Diferenciação Celular/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Via de Sinalização Wnt , Células-Tronco , Células Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...